Skew-Symmetric Splitting and Stability of High Order Central Schemes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

On Skew-Symmetric Splitting and Entropy Conservation Schemes for the Euler Equations

The Tadmor type of entropy conservation formulation for the Euler equations and various skewsymmetric splittings of the inviscid flux derivatives are discussed. Numerical stability of high order central and Padé type (centered compact) spatial discretization is enhanced through the application of these formulations. Numerical test on a 2-D vortex convection problem indicates that the stability ...

متن کامل

Four-class skew-symmetric association schemes

Article history: Received 4 November 2009 Available online 19 January 2011

متن کامل

Towards High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations

This paper reports progress towards high-order fluctuation-splitting schemes for the Navier-Stokes Equations. High-order schemes we examined previously are all based on gradient reconstruction, which may result in undesired mesh-dependency problem due to the somewhat ambiguous gradient reconstruction procedures. Here, we consider schemes for P2 elements in order to eliminate the need for such g...

متن کامل

High-order splitting schemes for semilinear evolution equations

We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2017

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/837/1/012019